A Comprehensive Study on Cyber Attack Vectors in EV Traction Power Electronics
Authors
Siddhesh Pimpale
Categories
Abstract
Electric vehicles (EVs) have drastically changed the auto industry and developed a new era of technologies where power electronics play the leading role in traction management, energy conversion and vehicle control processes. Nevertheless, this is a digital transformation, and the cyber-attack surface area has increased considerably, to the point that EV traction power electronics are becoming vulnerable to various cybersecurity risks. This paper is able to provide its expertise on possible cyber-attack vectors which can attack important parts of the traction, powertrain, including things like inverters, motor controllers, and communicated systems within the embedded bits. Using the (STRIDE) threat modeling framework, the research outlines and groups the vulnerabilities of the architecture and runs some attack simulations, such as the Denial of Service (DoS), spoofing, firmware manipulation, and data injection. The experiments prove the fact that a slight interruption in the control signal, the sensed data may lead to the severe working implications, such as unstable sensor values of the torque, abnormal voltage shifts, and entire system freezes. These results highlight the high priority on the need of injective embedded intrusion preventive mechanisms and secure design of firmware in EV powertrain electronics. In this paper, the author makes his contribution to the general body of knowledge that underpins the links existing between cyber security practices and the peculiar needs of automotive power electronics.
A Comprehensive Study on Cyber Attack Vectors in EV Traction Power Electronics
Categories
Abstract
Electric vehicles (EVs) have drastically changed the auto industry and developed a new era of technologies where power electronics play the leading role in traction management, energy conversion and vehicle control processes. Nevertheless, this is a digital transformation, and the cyber-attack surface area has increased considerably, to the point that EV traction power electronics are becoming vulnerable to various cybersecurity risks. This paper is able to provide its expertise on possible cyber-attack vectors which can attack important parts of the traction, powertrain, including things like inverters, motor controllers, and communicated systems within the embedded bits. Using the (STRIDE) threat modeling framework, the research outlines and groups the vulnerabilities of the architecture and runs some attack simulations, such as the Denial of Service (DoS), spoofing, firmware manipulation, and data injection. The experiments prove the fact that a slight interruption in the control signal, the sensed data may lead to the severe working implications, such as unstable sensor values of the torque, abnormal voltage shifts, and entire system freezes. These results highlight the high priority on the need of injective embedded intrusion preventive mechanisms and secure design of firmware in EV powertrain electronics. In this paper, the author makes his contribution to the general body of knowledge that underpins the links existing between cyber security practices and the peculiar needs of automotive power electronics.
Authors
Siddhesh Pimpale
Click to preview the PDF directly in your browser