A Comparative Study of Removal Noise from Remote Sensing Image
Authors
Salem Saleh Al-amri, N. V. Kalyankar, S. D. Khamitkar
Categories
Abstract
This paper attempts to undertake the study of three types of noise such as Salt and Pepper (SPN), Random variation Impulse Noise (RVIN), Speckle (SPKN). Different noise densities have been removed between 10% to 60% by using five types of filters as Mean Filter (MF), Adaptive Wiener Filter (AWF), Gaussian Filter (GF), Standard Median Filter (SMF) and Adaptive Median Filter (AMF). The same is applied to the Saturn remote sensing image and they are compared with one another. The comparative study is conducted with the help of Mean Square Errors (MSE) and Peak-Signal to Noise Ratio (PSNR). So as to choose the base method for removal of noise from remote sensing image.
A Comparative Study of Removal Noise from Remote Sensing Image
Categories
Abstract
This paper attempts to undertake the study of three types of noise such as Salt and Pepper (SPN), Random variation Impulse Noise (RVIN), Speckle (SPKN). Different noise densities have been removed between 10% to 60% by using five types of filters as Mean Filter (MF), Adaptive Wiener Filter (AWF), Gaussian Filter (GF), Standard Median Filter (SMF) and Adaptive Median Filter (AMF). The same is applied to the Saturn remote sensing image and they are compared with one another. The comparative study is conducted with the help of Mean Square Errors (MSE) and Peak-Signal to Noise Ratio (PSNR). So as to choose the base method for removal of noise from remote sensing image.
Authors
Salem Saleh Al-amri, N. V. Kalyankar, S. D. Khamitkar
Click to preview the PDF directly in your browser