PaperSwipe

Stability and bifurcations for dissipative polynomial automorphisms of C^2

Published 12 years agoVersion 2arXiv:1305.2898

Authors

Romain Dujardin, Mikhail Lyubich

Categories

math.DSmath.CV

Abstract

We study stability and bifurcations in holomorphic families of polynomial automorphisms of C^2. We say that such a family is weakly stable over some parameter domain if periodic orbits do not bifurcate there. We first show that this defines a meaningful notion of stability, which parallels in many ways the classical notion of J-stability in one-dimensional dynamics. In the second part of the paper, we prove that under an assumption of moderate dissipativity, the parameters displaying homoclinic tangencies are dense in the bifurcation locus. This confirms one of Palis' Conjectures in the complex setting. The proof relies on the formalism of semi-parabolic bifurcation and the construction of "critical points" in semi-parabolic basins (which makes use of the classical Denjoy-Carleman-Ahlfors and Wiman Theorems).

Stability and bifurcations for dissipative polynomial automorphisms of C^2

12 years ago
v2
2 authors

Categories

math.DSmath.CV

Abstract

We study stability and bifurcations in holomorphic families of polynomial automorphisms of C^2. We say that such a family is weakly stable over some parameter domain if periodic orbits do not bifurcate there. We first show that this defines a meaningful notion of stability, which parallels in many ways the classical notion of J-stability in one-dimensional dynamics. In the second part of the paper, we prove that under an assumption of moderate dissipativity, the parameters displaying homoclinic tangencies are dense in the bifurcation locus. This confirms one of Palis' Conjectures in the complex setting. The proof relies on the formalism of semi-parabolic bifurcation and the construction of "critical points" in semi-parabolic basins (which makes use of the classical Denjoy-Carleman-Ahlfors and Wiman Theorems).

Authors

Romain Dujardin, Mikhail Lyubich

arXiv ID: 1305.2898
Published May 13, 2013

Click to preview the PDF directly in your browser