Approaches to analysis with infinitesimals following Robinson, Nelson, and others
Authors
Peter Fletcher, Karel Hrbacek, Vladimir Kanovei, Mikhail G. Katz, Claude Lobry, Sam Sanders
Categories
Abstract
This is a survey of several approaches to the framework for working with infinitesimals and infinite numbers, originally developed by Abraham Robinson in the 1960s, and their constructive engagement with the Cantor-Dedekind postulate and the Intended Interpretation hypothesis. We highlight some applications including (1) Loeb's approach to the Lebesgue measure, (2) a radically elementary approach to the vibrating string, (3) true infinitesimal differential geometry. We explore the relation of Robinson's and related frameworks to the multiverse view as developed by Hamkins. Keywords: axiomatisations, infinitesimal, nonstandard analysis, ultraproducts, superstructure, set-theoretic foundations, multiverse, naive integers, intuitionism, soritical properties, ideal elements, protozoa.
Approaches to analysis with infinitesimals following Robinson, Nelson, and others
Categories
Abstract
This is a survey of several approaches to the framework for working with infinitesimals and infinite numbers, originally developed by Abraham Robinson in the 1960s, and their constructive engagement with the Cantor-Dedekind postulate and the Intended Interpretation hypothesis. We highlight some applications including (1) Loeb's approach to the Lebesgue measure, (2) a radically elementary approach to the vibrating string, (3) true infinitesimal differential geometry. We explore the relation of Robinson's and related frameworks to the multiverse view as developed by Hamkins. Keywords: axiomatisations, infinitesimal, nonstandard analysis, ultraproducts, superstructure, set-theoretic foundations, multiverse, naive integers, intuitionism, soritical properties, ideal elements, protozoa.
Authors
Peter Fletcher, Karel Hrbacek, Vladimir Kanovei et al. (+3 more)
Click to preview the PDF directly in your browser