PaperSwipe

A First Principles Investigation of Native Interstitial Diffusion in Cr2O3

Published 7 years agoVersion 2arXiv:1805.03775

Authors

Bharat Medasani, Maria L. Sushko, Kevin M. Rosso, Daniel K. Schreiber, Stephen M. Bruemmer

Categories

cond-mat.mtrl-sci

Abstract

First principles density functional theory (DFT) investigation of native interstitials and the associated self-diffusion mechanisms in α-Cr2O3 reveals that interstitials are more mobile than vacancies of corresponding species. Cr interstitials occupy the unoccupied Cr sublattice sites that are octahedrally coordinated by 6 O atoms, and O interstitials form a dumbbell configuration orientated along the [221] direction (diagonal) of the corundum lattice. Calculations predict that neutral O interstitials are predominant in O-rich conditions and Cr interstitials in +2 and +1 charge states are the dominant interstitial defects in Cr-rich conditions. Similar to that of the vacancies, the charge transition levels of both O and Cr interstitials are located deep within the bandgap. Transport calculations reveal a rich variety of interstitial diffusion mechanisms that are species, charge, and orientation dependent. Cr interstitials diffuse preferably along the diagonal of corundum lattice in a two step process via an intermediate defect complex comprising a Cr interstitial and an adjacent Cr Frenkel defect in the neighboring Cr bilayer. This mechanism is similar to that of the vacancy mediated Cr diffusion along the c-axis with intermediate Cr vacancy and Cr Frenkel defect combination. In contrast, O interstitials diffuse via bond switching mechanism. O interstitials in -1 and -2 charge states have very high mobility compared to neutral O interstitials.

A First Principles Investigation of Native Interstitial Diffusion in Cr2O3

7 years ago
v2
5 authors

Categories

cond-mat.mtrl-sci

Abstract

First principles density functional theory (DFT) investigation of native interstitials and the associated self-diffusion mechanisms in α-Cr2O3 reveals that interstitials are more mobile than vacancies of corresponding species. Cr interstitials occupy the unoccupied Cr sublattice sites that are octahedrally coordinated by 6 O atoms, and O interstitials form a dumbbell configuration orientated along the [221] direction (diagonal) of the corundum lattice. Calculations predict that neutral O interstitials are predominant in O-rich conditions and Cr interstitials in +2 and +1 charge states are the dominant interstitial defects in Cr-rich conditions. Similar to that of the vacancies, the charge transition levels of both O and Cr interstitials are located deep within the bandgap. Transport calculations reveal a rich variety of interstitial diffusion mechanisms that are species, charge, and orientation dependent. Cr interstitials diffuse preferably along the diagonal of corundum lattice in a two step process via an intermediate defect complex comprising a Cr interstitial and an adjacent Cr Frenkel defect in the neighboring Cr bilayer. This mechanism is similar to that of the vacancy mediated Cr diffusion along the c-axis with intermediate Cr vacancy and Cr Frenkel defect combination. In contrast, O interstitials diffuse via bond switching mechanism. O interstitials in -1 and -2 charge states have very high mobility compared to neutral O interstitials.

Authors

Bharat Medasani, Maria L. Sushko, Kevin M. Rosso et al. (+2 more)

arXiv ID: 1805.03775
Published May 10, 2018

Click to preview the PDF directly in your browser