PaperSwipe

Automatic High Resolution Wire Segmentation and Removal

Published 2 years agoVersion 1arXiv:2304.00221

Authors

Mang Tik Chiu, Xuaner Zhang, Zijun Wei, Yuqian Zhou, Eli Shechtman, Connelly Barnes, Zhe Lin, Florian Kainz, Sohrab Amirghodsi, Humphrey Shi

Categories

cs.CV

Abstract

Wires and powerlines are common visual distractions that often undermine the aesthetics of photographs. The manual process of precisely segmenting and removing them is extremely tedious and may take up hours, especially on high-resolution photos where wires may span the entire space. In this paper, we present an automatic wire clean-up system that eases the process of wire segmentation and removal/inpainting to within a few seconds. We observe several unique challenges: wires are thin, lengthy, and sparse. These are rare properties of subjects that common segmentation tasks cannot handle, especially in high-resolution images. We thus propose a two-stage method that leverages both global and local contexts to accurately segment wires in high-resolution images efficiently, and a tile-based inpainting strategy to remove the wires given our predicted segmentation masks. We also introduce the first wire segmentation benchmark dataset, WireSegHR. Finally, we demonstrate quantitatively and qualitatively that our wire clean-up system enables fully automated wire removal with great generalization to various wire appearances.

Automatic High Resolution Wire Segmentation and Removal

2 years ago
v1
10 authors

Categories

cs.CV

Abstract

Wires and powerlines are common visual distractions that often undermine the aesthetics of photographs. The manual process of precisely segmenting and removing them is extremely tedious and may take up hours, especially on high-resolution photos where wires may span the entire space. In this paper, we present an automatic wire clean-up system that eases the process of wire segmentation and removal/inpainting to within a few seconds. We observe several unique challenges: wires are thin, lengthy, and sparse. These are rare properties of subjects that common segmentation tasks cannot handle, especially in high-resolution images. We thus propose a two-stage method that leverages both global and local contexts to accurately segment wires in high-resolution images efficiently, and a tile-based inpainting strategy to remove the wires given our predicted segmentation masks. We also introduce the first wire segmentation benchmark dataset, WireSegHR. Finally, we demonstrate quantitatively and qualitatively that our wire clean-up system enables fully automated wire removal with great generalization to various wire appearances.

Authors

Mang Tik Chiu, Xuaner Zhang, Zijun Wei et al. (+7 more)

arXiv ID: 2304.00221
Published Apr 1, 2023

Click to preview the PDF directly in your browser