PaperSwipe

Diffusion Trajectory-guided Policy for Long-horizon Robot Manipulation

Published 9 months agoVersion 2arXiv:2502.10040

Authors

Shichao Fan, Quantao Yang, Yajie Liu, Kun Wu, Zhengping Che, Qingjie Liu, Min Wan

Categories

cs.RO

Abstract

Recently, Vision-Language-Action models (VLA) have advanced robot imitation learning, but high data collection costs and limited demonstrations hinder generalization and current imitation learning methods struggle in out-of-distribution scenarios, especially for long-horizon tasks. A key challenge is how to mitigate compounding errors in imitation learning, which lead to cascading failures over extended trajectories. To address these challenges, we propose the Diffusion Trajectory-guided Policy (DTP) framework, which generates 2D trajectories through a diffusion model to guide policy learning for long-horizon tasks. By leveraging task-relevant trajectories, DTP provides trajectory-level guidance to reduce error accumulation. Our two-stage approach first trains a generative vision-language model to create diffusion-based trajectories, then refines the imitation policy using them. Experiments on the CALVIN benchmark show that DTP outperforms state-of-the-art baselines by 25% in success rate, starting from scratch without external pretraining. Moreover, DTP significantly improves real-world robot performance.

Diffusion Trajectory-guided Policy for Long-horizon Robot Manipulation

9 months ago
v2
7 authors

Categories

cs.RO

Abstract

Recently, Vision-Language-Action models (VLA) have advanced robot imitation learning, but high data collection costs and limited demonstrations hinder generalization and current imitation learning methods struggle in out-of-distribution scenarios, especially for long-horizon tasks. A key challenge is how to mitigate compounding errors in imitation learning, which lead to cascading failures over extended trajectories. To address these challenges, we propose the Diffusion Trajectory-guided Policy (DTP) framework, which generates 2D trajectories through a diffusion model to guide policy learning for long-horizon tasks. By leveraging task-relevant trajectories, DTP provides trajectory-level guidance to reduce error accumulation. Our two-stage approach first trains a generative vision-language model to create diffusion-based trajectories, then refines the imitation policy using them. Experiments on the CALVIN benchmark show that DTP outperforms state-of-the-art baselines by 25% in success rate, starting from scratch without external pretraining. Moreover, DTP significantly improves real-world robot performance.

Authors

Shichao Fan, Quantao Yang, Yajie Liu et al. (+4 more)

arXiv ID: 2502.10040
Published Feb 14, 2025

Click to preview the PDF directly in your browser