PaperSwipe

The Rise of Generative AI for Metal-Organic Framework Design and Synthesis

Published 3 months agoVersion 1arXiv:2508.13197

Authors

Chenru Duan, Aditya Nandy, Shyam Chand Pal, Xin Yang, Wenhao Gao, Yuanqi Du, Hendrik Kraß, Yeonghun Kang, Varinia Bernales, Zuyang Ye, Tristan Pyle, Ray Yang, Zeqi Gu, Philippe Schwaller, Shengqian Ma, Shijing Sun, Alán Aspuru-Guzik, Seyed Mohamad Moosavi, Robert Wexler, Zhiling Zheng

Categories

cond-mat.mtrl-scics.AI

Abstract

Advances in generative artificial intelligence are transforming how metal-organic frameworks (MOFs) are designed and discovered. This Perspective introduces the shift from laborious enumeration of MOF candidates to generative approaches that can autonomously propose and synthesize in the laboratory new porous reticular structures on demand. We outline the progress of employing deep learning models, such as variational autoencoders, diffusion models, and large language model-based agents, that are fueled by the growing amount of available data from the MOF community and suggest novel crystalline materials designs. These generative tools can be combined with high-throughput computational screening and even automated experiments to form accelerated, closed-loop discovery pipelines. The result is a new paradigm for reticular chemistry in which AI algorithms more efficiently direct the search for high-performance MOF materials for clean air and energy applications. Finally, we highlight remaining challenges such as synthetic feasibility, dataset diversity, and the need for further integration of domain knowledge.

The Rise of Generative AI for Metal-Organic Framework Design and Synthesis

3 months ago
v1
20 authors

Categories

cond-mat.mtrl-scics.AI

Abstract

Advances in generative artificial intelligence are transforming how metal-organic frameworks (MOFs) are designed and discovered. This Perspective introduces the shift from laborious enumeration of MOF candidates to generative approaches that can autonomously propose and synthesize in the laboratory new porous reticular structures on demand. We outline the progress of employing deep learning models, such as variational autoencoders, diffusion models, and large language model-based agents, that are fueled by the growing amount of available data from the MOF community and suggest novel crystalline materials designs. These generative tools can be combined with high-throughput computational screening and even automated experiments to form accelerated, closed-loop discovery pipelines. The result is a new paradigm for reticular chemistry in which AI algorithms more efficiently direct the search for high-performance MOF materials for clean air and energy applications. Finally, we highlight remaining challenges such as synthetic feasibility, dataset diversity, and the need for further integration of domain knowledge.

Authors

Chenru Duan, Aditya Nandy, Shyam Chand Pal et al. (+17 more)

arXiv ID: 2508.13197
Published Aug 15, 2025

Click to preview the PDF directly in your browser