Dark Energy Survey Year 3 Results: Cosmological constraints from second and third-order shear statistics
Authors
R. C. H. Gomes, S. Sugiyama, B. Jain, M. Jarvis, D. Anbajagane, A. Halder, G. A. Marques, S. Pandey, J. Marshall, A. Alarcon, A. Amon, K. Bechtol, M. Becker, G. Bernstein, A. Campos, R. Cawthon, C. Chang, R. Chen, A. Choi, J. Cordero, C. Davis, J. Derose, S. Dodelson, C. Doux, K. Eckert, F. Elsner, J. Elvin-Poole, S. Everett, A. Ferté, M. Gatti, G. Giannini, D. Gruen, I. Harrison, K. Herner, E. M. Huff, D. Huterer, N. Kuropatkin, P. F. Leget, N. Maccrann, J. Mccullough, J. Muir, J. Myles, A. Navarro Alsina, J. Prat, M. Raveri, R. P. Rollins, A. Roodman, A. J. Ross, E. S. Rykoff, C. Sánchez, L. F. Secco, E. Sheldon, T. Shin, M. Troxel, I. Tutusaus, T. N. Varga, B. Yanny, B. Yin, Y. Zhang, J. Zuntz, M. Aguena, F. Andrade-Oliveira, D. Bacon, J. Blazek, S. Bocquet, D. Brooks, A. Carnero Rosell, J. Carretero, M. Costanzi, L. da Costa, M. E. da Silva Pereira, T. M. Davis, J. De Vicente, H. T. Diehl, B. Flaugher, J. Frieman, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, N. Jeffrey, S. Lee, J. Mena-Fernández, R. Miquel, R. L. C. Ogando, A. A. Plazas Malagón, A. Porredon, E. Sanchez, D. Sanchez Cid, S. Samuroff, M. Smith, E. Suchyta, M. E. C. Swanson, D. Thomas, V. Vikram, J. Weller, M. Yamamoto
Categories
Abstract
We present a cosmological analysis of the third-order aperture mass statistic using Dark Energy Survey Year 3 (DES Y3) data. We perform a complete tomographic measurement of the three-point correlation function of the Y3 weak lensing shape catalog with the four fiducial source redshift bins. Building upon our companion methodology paper, we apply a pipeline that combines the two-point function $ξ_{\pm}$ with the mass aperture skewness statistic $\langle M_{\rm ap}^3\rangle$, which is an efficient compression of the full shear three-point function. We use a suite of simulated shear maps to obtain a joint covariance matrix. By jointly analyzing $ξ_\pm$ and $\langle M_{\rm ap}^3\rangle$ measured from DES Y3 data with a $Λ$CDM model, we find $S_8=0.780\pm0.015$ and $Ω_{\rm m}=0.266^{+0.039}_{-0.040}$, yielding 111% of figure-of-merit improvement in $Ω_m$-$S_8$ plane relative to $ξ_{\pm}$ alone, consistent with expectations from simulated likelihood analyses. With a $w$CDM model, we find $S_8=0.749^{+0.027}_{-0.026}$ and $w_0=-1.39\pm 0.31$, which gives an improvement of $22\%$ on the joint $S_8$-$w_0$ constraint. Our results are consistent with $w_0=-1$. Our new constraints are compared to CMB data from the Planck satellite, and we find that with the inclusion of $\langle M_{\rm ap}^3\rangle$ the existing tension between the data sets is at the level of $2.3σ$. We show that the third-order statistic enables us to self-calibrate the mean photometric redshift uncertainty parameter of the highest redshift bin with little degradation in the figure of merit. Our results demonstrate the constraining power of higher-order lensing statistics and establish $\langle M_{\rm ap}^3\rangle$ as a practical observable for joint analyses in current and future surveys.
Dark Energy Survey Year 3 Results: Cosmological constraints from second and third-order shear statistics
Categories
Abstract
We present a cosmological analysis of the third-order aperture mass statistic using Dark Energy Survey Year 3 (DES Y3) data. We perform a complete tomographic measurement of the three-point correlation function of the Y3 weak lensing shape catalog with the four fiducial source redshift bins. Building upon our companion methodology paper, we apply a pipeline that combines the two-point function $ξ_{\pm}$ with the mass aperture skewness statistic $\langle M_{\rm ap}^3\rangle$, which is an efficient compression of the full shear three-point function. We use a suite of simulated shear maps to obtain a joint covariance matrix. By jointly analyzing $ξ_\pm$ and $\langle M_{\rm ap}^3\rangle$ measured from DES Y3 data with a $Λ$CDM model, we find $S_8=0.780\pm0.015$ and $Ω_{\rm m}=0.266^{+0.039}_{-0.040}$, yielding 111% of figure-of-merit improvement in $Ω_m$-$S_8$ plane relative to $ξ_{\pm}$ alone, consistent with expectations from simulated likelihood analyses. With a $w$CDM model, we find $S_8=0.749^{+0.027}_{-0.026}$ and $w_0=-1.39\pm 0.31$, which gives an improvement of $22\%$ on the joint $S_8$-$w_0$ constraint. Our results are consistent with $w_0=-1$. Our new constraints are compared to CMB data from the Planck satellite, and we find that with the inclusion of $\langle M_{\rm ap}^3\rangle$ the existing tension between the data sets is at the level of $2.3σ$. We show that the third-order statistic enables us to self-calibrate the mean photometric redshift uncertainty parameter of the highest redshift bin with little degradation in the figure of merit. Our results demonstrate the constraining power of higher-order lensing statistics and establish $\langle M_{\rm ap}^3\rangle$ as a practical observable for joint analyses in current and future surveys.
Authors
R. C. H. Gomes, S. Sugiyama, B. Jain et al. (+95 more)
Click to preview the PDF directly in your browser