The Method of Infinite Descent
Authors
Reza T. Batley, Sourav Saha
Categories
Abstract
Training - the optimisation of complex models - is traditionally performed through small, local, iterative updates [D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 323, 533-536 (1986)]. Approximating solutions through truncated gradients is a paradigm dating back to Cauchy [A.-L. Cauchy, Comptes Rendus Mathématique 25, 536-538 (1847)] and Newton [I. Newton, The Method of Fluxions and Infinite Series (Henry Woodfall, London, 1736)]. This work introduces the Method of Infinite Descent, a semi-analytic optimisation paradigm that reformulates training as the direct solution to the first-order optimality condition. By analytical resummation of its Taylor expansion, this method yields an exact, algebraic equation for the update step. Realisation of the infinite Taylor tower's cascading resummation is formally derived, and an exploitative algorithm for the direct solve step is proposed. This principle is demonstrated with the herein-introduced AION (Analytic, Infinitely-Optimisable Network) architecture. AION is a model designed expressly to satisfy the algebraic closure required by Infinite Descent. In a simple test problem, AION reaches the optimum in a single descent step. Together, this optimiser-model pair exemplify how analytic structure enables exact, non-iterative convergence. Infinite Descent extends beyond this example, applying to any appropriately closed architecture. This suggests a new class of semi-analytically optimisable models: the \emph{Infinity Class}; sufficient conditions for class membership are discussed. This offers a pathway toward non-iterative learning.
The Method of Infinite Descent
Categories
Abstract
Training - the optimisation of complex models - is traditionally performed through small, local, iterative updates [D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 323, 533-536 (1986)]. Approximating solutions through truncated gradients is a paradigm dating back to Cauchy [A.-L. Cauchy, Comptes Rendus Mathématique 25, 536-538 (1847)] and Newton [I. Newton, The Method of Fluxions and Infinite Series (Henry Woodfall, London, 1736)]. This work introduces the Method of Infinite Descent, a semi-analytic optimisation paradigm that reformulates training as the direct solution to the first-order optimality condition. By analytical resummation of its Taylor expansion, this method yields an exact, algebraic equation for the update step. Realisation of the infinite Taylor tower's cascading resummation is formally derived, and an exploitative algorithm for the direct solve step is proposed. This principle is demonstrated with the herein-introduced AION (Analytic, Infinitely-Optimisable Network) architecture. AION is a model designed expressly to satisfy the algebraic closure required by Infinite Descent. In a simple test problem, AION reaches the optimum in a single descent step. Together, this optimiser-model pair exemplify how analytic structure enables exact, non-iterative convergence. Infinite Descent extends beyond this example, applying to any appropriately closed architecture. This suggests a new class of semi-analytically optimisable models: the \emph{Infinity Class}; sufficient conditions for class membership are discussed. This offers a pathway toward non-iterative learning.
Authors
Reza T. Batley, Sourav Saha
Click to preview the PDF directly in your browser