PaperSwipe

Energy-Efficient Deep Learning Without Backpropagation: A Rigorous Evaluation of Forward-Only Algorithms

Published 1 month agoVersion 1arXiv:2511.01061

Authors

Przemysław Spyra, Witold Dzwinel

Categories

cs.LGcs.AI

Abstract

The long-held assumption that backpropagation (BP) is essential for state-of-the-art performance is challenged by this work. We present rigorous, hardware-validated evidence that the Mono-Forward (MF) algorithm, a backpropagation-free method, consistently surpasses an optimally tuned BP baseline in classification accuracy on its native Multi-Layer Perceptron (MLP) architectures. This superior generalization is achieved with profound efficiency gains, including up to 41% less energy consumption and up to 34% faster training. Our analysis, which charts an evolutionary path from Geoffrey Hinton's Forward-Forward (FF) to the Cascaded Forward (CaFo) and finally to MF, is grounded in a fair comparative framework using identical architectures and universal hyperparameter optimization. We further provide a critical re-evaluation of memory efficiency in BP-free methods, empirically demonstrating that practical overhead can offset theoretical gains. Ultimately, this work establishes MF as a practical, high-performance, and sustainable alternative to BP for MLPs.

Energy-Efficient Deep Learning Without Backpropagation: A Rigorous Evaluation of Forward-Only Algorithms

1 month ago
v1
2 authors

Categories

cs.LGcs.AI

Abstract

The long-held assumption that backpropagation (BP) is essential for state-of-the-art performance is challenged by this work. We present rigorous, hardware-validated evidence that the Mono-Forward (MF) algorithm, a backpropagation-free method, consistently surpasses an optimally tuned BP baseline in classification accuracy on its native Multi-Layer Perceptron (MLP) architectures. This superior generalization is achieved with profound efficiency gains, including up to 41% less energy consumption and up to 34% faster training. Our analysis, which charts an evolutionary path from Geoffrey Hinton's Forward-Forward (FF) to the Cascaded Forward (CaFo) and finally to MF, is grounded in a fair comparative framework using identical architectures and universal hyperparameter optimization. We further provide a critical re-evaluation of memory efficiency in BP-free methods, empirically demonstrating that practical overhead can offset theoretical gains. Ultimately, this work establishes MF as a practical, high-performance, and sustainable alternative to BP for MLPs.

Authors

Przemysław Spyra, Witold Dzwinel

arXiv ID: 2511.01061
Published Nov 2, 2025

Click to preview the PDF directly in your browser