Security and Privacy Management of IoT Using Quantum Computing
Authors
Jaydip Sen
Categories
Abstract
The convergence of the Internet of Things (IoT) and quantum computing is redefining the security paradigm of interconnected digital systems. Classical cryptographic algorithms such as RSA, Elliptic Curve Cryptography (ECC), and Advanced Encryption Standard (AES) have long provided the foundation for securing IoT communication. However, the emergence of quantum algorithms such as Shor's and Grover's threatens to render these techniques vulnerable, necessitating the development of quantum-resilient alternatives. This chapter examines the implications of quantum computing for IoT security and explores strategies for building cryptographically robust systems in the post-quantum era. It presents an overview of Post-Quantum Cryptographic (PQC) families, including lattice-based, code-based, hash-based, and multivariate approaches, analyzing their potential for deployment in resource-constrained IoT environments. In addition, quantum-based methods such as Quantum Key Distribution (QKD) and Quantum Random Number Generators (QRNGs) are discussed for their ability to enhance confidentiality and privacy through physics-based security guarantees. The chapter also highlights issues of privacy management, regulatory compliance, and standardization, emphasizing the need for collaborative efforts across academia, industry, and governance. Overall, it provides a comprehensive perspective on security IoT ecosystems against quantum threats and ensures resilience in the next generation of intelligent networks.
Security and Privacy Management of IoT Using Quantum Computing
Categories
Abstract
The convergence of the Internet of Things (IoT) and quantum computing is redefining the security paradigm of interconnected digital systems. Classical cryptographic algorithms such as RSA, Elliptic Curve Cryptography (ECC), and Advanced Encryption Standard (AES) have long provided the foundation for securing IoT communication. However, the emergence of quantum algorithms such as Shor's and Grover's threatens to render these techniques vulnerable, necessitating the development of quantum-resilient alternatives. This chapter examines the implications of quantum computing for IoT security and explores strategies for building cryptographically robust systems in the post-quantum era. It presents an overview of Post-Quantum Cryptographic (PQC) families, including lattice-based, code-based, hash-based, and multivariate approaches, analyzing their potential for deployment in resource-constrained IoT environments. In addition, quantum-based methods such as Quantum Key Distribution (QKD) and Quantum Random Number Generators (QRNGs) are discussed for their ability to enhance confidentiality and privacy through physics-based security guarantees. The chapter also highlights issues of privacy management, regulatory compliance, and standardization, emphasizing the need for collaborative efforts across academia, industry, and governance. Overall, it provides a comprehensive perspective on security IoT ecosystems against quantum threats and ensures resilience in the next generation of intelligent networks.
Authors
Jaydip Sen
Click to preview the PDF directly in your browser