PaperSwipe

Addressable gate-based logical computation with quantum LDPC codes

Published 4 weeks agoVersion 1arXiv:2511.06124

Authors

Laura Pecorari, Francesco Paolo Guerci, Hugo Perrin, Guido Pupillo

Categories

quant-ph

Abstract

Quantum computing relies on quantum error correction for high-fidelity logical operations, but scaling to achieve near-term quantum utility is highly resource-intensive. High-rate quantum LDPC codes can reduce error correction overhead, yet realizing high-rate fault-tolerant computation with these codes remains a central challenge. Apart of the lattice surgery approach, standard schemes for realizing logical gates have so far been restricted to performing global operations on all logical qubits at the same time. Another approach relies on low-rate code switching methods. In this work, we introduce a gate-based protocol for addressable single- and multi-qubit Clifford operations on individual logical qubits encoded within one or more quantum LDPC codes. Our scheme leverages logical transversal operations via an auxiliary Bacon-Shor code to perform logical operations with constant time overhead enabled by teleportation. We demonstrate the implementation of an overcomplete logical Clifford gate set and perform numerical simulations to evaluate the error-correction performance of our protocol. Finally, we observe that our scheme can be integrated with magic state cultivation protocols to achieve universal, gate-based, and fully addressable quantum computation.

Addressable gate-based logical computation with quantum LDPC codes

4 weeks ago
v1
4 authors

Categories

quant-ph

Abstract

Quantum computing relies on quantum error correction for high-fidelity logical operations, but scaling to achieve near-term quantum utility is highly resource-intensive. High-rate quantum LDPC codes can reduce error correction overhead, yet realizing high-rate fault-tolerant computation with these codes remains a central challenge. Apart of the lattice surgery approach, standard schemes for realizing logical gates have so far been restricted to performing global operations on all logical qubits at the same time. Another approach relies on low-rate code switching methods. In this work, we introduce a gate-based protocol for addressable single- and multi-qubit Clifford operations on individual logical qubits encoded within one or more quantum LDPC codes. Our scheme leverages logical transversal operations via an auxiliary Bacon-Shor code to perform logical operations with constant time overhead enabled by teleportation. We demonstrate the implementation of an overcomplete logical Clifford gate set and perform numerical simulations to evaluate the error-correction performance of our protocol. Finally, we observe that our scheme can be integrated with magic state cultivation protocols to achieve universal, gate-based, and fully addressable quantum computation.

Authors

Laura Pecorari, Francesco Paolo Guerci, Hugo Perrin et al. (+1 more)

arXiv ID: 2511.06124
Published Nov 8, 2025

Click to preview the PDF directly in your browser