PaperSwipe

DyPBP: Dynamic Peer Beneficialness Prediction for Cryptocurrency P2P Networking

Published 1 month agoVersion 1arXiv:2511.17523

Authors

Nazmus Sakib, Simeon Wuthier, Amanul Islam, Xiaobo Zhou, Jinoh Kim, Ikkyun Kim, Sang-Yoon Chang

Categories

cs.NIcs.LG

Abstract

Distributed peer-to-peer (P2P) networking delivers the new blocks and transactions and is critical for the cryptocurrency blockchain system operations. Having poor P2P connectivity reduces the financial rewards from the mining consensus protocol. Previous research defines beneficalness of each Bitcoin peer connection and estimates the beneficialness based on the observations of the blocks and transactions delivery, which are after they are delivered. However, due to the infrequent block arrivals and the sporadic and unstable peer connections, the peers do not stay connected long enough to have the beneficialness score to converge to its expected beneficialness. We design and build Dynamic Peer Beneficialness Prediction (DyPBP) which predicts a peer's beneficialness by using networking behavior observations beyond just the block and transaction arrivals. DyPBP advances the previous research by estimating the beneficialness of a peer connection before it delivers new blocks and transactions. To achieve such goal, DyPBP introduces a new feature for remembrance to address the dynamic connectivity issue, as Bitcoin's peers using distributed networking often disconnect and re-connect. We implement DyPBP on an active Bitcoin node connected to the Mainnet and use machine learning for the beneficialness prediction. Our experimental results validate and evaluate the effectiveness of DyPBP; for example, the error performance improves by 2 to 13 orders of magnitude depending on the machine-learning model selection. DyPBP's use of the remembrance feature also informs our model selection. DyPBP enables the P2P connection's beneficialness estimation from the connection start before a new block arrives.

DyPBP: Dynamic Peer Beneficialness Prediction for Cryptocurrency P2P Networking

1 month ago
v1
7 authors

Categories

cs.NIcs.LG

Abstract

Distributed peer-to-peer (P2P) networking delivers the new blocks and transactions and is critical for the cryptocurrency blockchain system operations. Having poor P2P connectivity reduces the financial rewards from the mining consensus protocol. Previous research defines beneficalness of each Bitcoin peer connection and estimates the beneficialness based on the observations of the blocks and transactions delivery, which are after they are delivered. However, due to the infrequent block arrivals and the sporadic and unstable peer connections, the peers do not stay connected long enough to have the beneficialness score to converge to its expected beneficialness. We design and build Dynamic Peer Beneficialness Prediction (DyPBP) which predicts a peer's beneficialness by using networking behavior observations beyond just the block and transaction arrivals. DyPBP advances the previous research by estimating the beneficialness of a peer connection before it delivers new blocks and transactions. To achieve such goal, DyPBP introduces a new feature for remembrance to address the dynamic connectivity issue, as Bitcoin's peers using distributed networking often disconnect and re-connect. We implement DyPBP on an active Bitcoin node connected to the Mainnet and use machine learning for the beneficialness prediction. Our experimental results validate and evaluate the effectiveness of DyPBP; for example, the error performance improves by 2 to 13 orders of magnitude depending on the machine-learning model selection. DyPBP's use of the remembrance feature also informs our model selection. DyPBP enables the P2P connection's beneficialness estimation from the connection start before a new block arrives.

Authors

Nazmus Sakib, Simeon Wuthier, Amanul Islam et al. (+4 more)

arXiv ID: 2511.17523
Published Oct 22, 2025

Click to preview the PDF directly in your browser