PaperSwipe

Peer-to-Peer Energy Trading in Dairy Farms using Multi-Agent Reinforcement Learning

Published 1 week agoVersion 1arXiv:2511.23148

Authors

Mian Ibad Ali Shah, Marcos Eduardo Cruz Victorio, Maeve Duffy, Enda Barrett, Karl Mason

Categories

cs.AI

Abstract

The integration of renewable energy resources in rural areas, such as dairy farming communities, enables decentralized energy management through Peer-to-Peer (P2P) energy trading. This research highlights the role of P2P trading in efficient energy distribution and its synergy with advanced optimization techniques. While traditional rule-based methods perform well under stable conditions, they struggle in dynamic environments. To address this, Multi-Agent Reinforcement Learning (MARL), specifically Proximal Policy Optimization (PPO) and Deep Q-Networks (DQN), is combined with community/distributed P2P trading mechanisms. By incorporating auction-based market clearing, a price advisor agent, and load and battery management, the approach achieves significant improvements. Results show that, compared to baseline models, DQN reduces electricity costs by 14.2% in Ireland and 5.16% in Finland, while increasing electricity revenue by 7.24% and 12.73%, respectively. PPO achieves the lowest peak hour demand, reducing it by 55.5% in Ireland, while DQN reduces peak hour demand by 50.0% in Ireland and 27.02% in Finland. These improvements are attributed to both MARL algorithms and P2P energy trading, which together results in electricity cost and peak hour demand reduction, and increase electricity selling revenue. This study highlights the complementary strengths of DQN, PPO, and P2P trading in achieving efficient, adaptable, and sustainable energy management in rural communities.

Peer-to-Peer Energy Trading in Dairy Farms using Multi-Agent Reinforcement Learning

1 week ago
v1
5 authors

Categories

cs.AI

Abstract

The integration of renewable energy resources in rural areas, such as dairy farming communities, enables decentralized energy management through Peer-to-Peer (P2P) energy trading. This research highlights the role of P2P trading in efficient energy distribution and its synergy with advanced optimization techniques. While traditional rule-based methods perform well under stable conditions, they struggle in dynamic environments. To address this, Multi-Agent Reinforcement Learning (MARL), specifically Proximal Policy Optimization (PPO) and Deep Q-Networks (DQN), is combined with community/distributed P2P trading mechanisms. By incorporating auction-based market clearing, a price advisor agent, and load and battery management, the approach achieves significant improvements. Results show that, compared to baseline models, DQN reduces electricity costs by 14.2% in Ireland and 5.16% in Finland, while increasing electricity revenue by 7.24% and 12.73%, respectively. PPO achieves the lowest peak hour demand, reducing it by 55.5% in Ireland, while DQN reduces peak hour demand by 50.0% in Ireland and 27.02% in Finland. These improvements are attributed to both MARL algorithms and P2P energy trading, which together results in electricity cost and peak hour demand reduction, and increase electricity selling revenue. This study highlights the complementary strengths of DQN, PPO, and P2P trading in achieving efficient, adaptable, and sustainable energy management in rural communities.

Authors

Mian Ibad Ali Shah, Marcos Eduardo Cruz Victorio, Maeve Duffy et al. (+2 more)

arXiv ID: 2511.23148
Published Nov 28, 2025

Click to preview the PDF directly in your browser