Active Hypothesis Testing under Computational Budgets with Applications to GWAS and LLM
Authors
Qi Kuang, Bowen Gang, Yin Xia
Categories
Abstract
In large-scale hypothesis testing, computing exact $p$-values or $e$-values is often resource-intensive, creating a need for budget-aware inferential methods. We propose a general framework for active hypothesis testing that leverages inexpensive auxiliary statistics to allocate a global computational budget. For each hypothesis, our data-adaptive procedure probabilistically decides whether to compute the exact test statistic or a transformed proxy, guaranteeing a valid $p$-value or $e$-value while satisfying the budget constraint in expectation. Theoretical guarantees are established for our constructions, showing that the procedure achieves optimality for $e$-values and for $p$-values under independence, and admissibility for $p$-values under general dependence. Empirical results from simulations and two real-world applications, including a large-scale genome-wide association study (GWAS) and a clinical prediction task leveraging large language models (LLM), demonstrate that our framework improves statistical efficiency under fixed resource limits.
Active Hypothesis Testing under Computational Budgets with Applications to GWAS and LLM
Categories
Abstract
In large-scale hypothesis testing, computing exact $p$-values or $e$-values is often resource-intensive, creating a need for budget-aware inferential methods. We propose a general framework for active hypothesis testing that leverages inexpensive auxiliary statistics to allocate a global computational budget. For each hypothesis, our data-adaptive procedure probabilistically decides whether to compute the exact test statistic or a transformed proxy, guaranteeing a valid $p$-value or $e$-value while satisfying the budget constraint in expectation. Theoretical guarantees are established for our constructions, showing that the procedure achieves optimality for $e$-values and for $p$-values under independence, and admissibility for $p$-values under general dependence. Empirical results from simulations and two real-world applications, including a large-scale genome-wide association study (GWAS) and a clinical prediction task leveraging large language models (LLM), demonstrate that our framework improves statistical efficiency under fixed resource limits.
Authors
Qi Kuang, Bowen Gang, Yin Xia
Click to preview the PDF directly in your browser