PaperSwipe

Local chemical order suppresses grain boundary migration under irradiation in CrCoNi

Published 4 days agoVersion 1arXiv:2512.01933

Authors

Ian Geiger, Penghui Cao, Timothy J. Rupert

Categories

cond-mat.mtrl-sci

Abstract

Complex concentrated alloys with intrinsic chemical heterogeneity are promising candidates for nuclear applications, where local chemical order can strongly influence defect evolution under irradiation. Grain boundaries also contribute to radiation damage mitigation by serving as defect sinks, yet this interaction can alter interfacial structure, typically leading to destabilization and grain growth. This study investigates how chemical ordering influences grain boundary migration and stability during successive radiation events in CrCoNi. Using atomistic simulations, bicrystals were equilibrated to induce segregation-enhanced chemical order, followed by prolonged irradiation at 1100 K. Our results show that grain boundaries in random CrCoNi begin to migrate after only a few collision cascades, whereas those in the ordered alloy remain immobile until the chemical order is sufficiently disrupted. Single-cascade simulations reveal key mechanistic differences, where cascades near chemically ordered interfaces produce smaller damage volumes and reduced atomic displacement due to enhanced Frenkel pair combination within the cascade core. This limits both the residual defect population and the energetic driving force for interfacial rearrangement. Subsequent simulations of irradiated interfaces show that interstitial absorption induces a structural transition that modifies the segregation morphology at and near the grain boundary, demonstrating a dynamic coupling between ordering stability and defect evolution. These findings offer new insights into the role of local chemical order on defect-interface interactions under extreme conditions and highlight pathways for designing radiation-tolerant materials for next-generation nuclear systems.

Local chemical order suppresses grain boundary migration under irradiation in CrCoNi

4 days ago
v1
3 authors

Categories

cond-mat.mtrl-sci

Abstract

Complex concentrated alloys with intrinsic chemical heterogeneity are promising candidates for nuclear applications, where local chemical order can strongly influence defect evolution under irradiation. Grain boundaries also contribute to radiation damage mitigation by serving as defect sinks, yet this interaction can alter interfacial structure, typically leading to destabilization and grain growth. This study investigates how chemical ordering influences grain boundary migration and stability during successive radiation events in CrCoNi. Using atomistic simulations, bicrystals were equilibrated to induce segregation-enhanced chemical order, followed by prolonged irradiation at 1100 K. Our results show that grain boundaries in random CrCoNi begin to migrate after only a few collision cascades, whereas those in the ordered alloy remain immobile until the chemical order is sufficiently disrupted. Single-cascade simulations reveal key mechanistic differences, where cascades near chemically ordered interfaces produce smaller damage volumes and reduced atomic displacement due to enhanced Frenkel pair combination within the cascade core. This limits both the residual defect population and the energetic driving force for interfacial rearrangement. Subsequent simulations of irradiated interfaces show that interstitial absorption induces a structural transition that modifies the segregation morphology at and near the grain boundary, demonstrating a dynamic coupling between ordering stability and defect evolution. These findings offer new insights into the role of local chemical order on defect-interface interactions under extreme conditions and highlight pathways for designing radiation-tolerant materials for next-generation nuclear systems.

Authors

Ian Geiger, Penghui Cao, Timothy J. Rupert

arXiv ID: 2512.01933
Published Dec 1, 2025

Click to preview the PDF directly in your browser