On the Eigen-Falconer theorem in $\mathbb{R}^d$
Authors
Wenxia Li, Zhiqiang Wang, Jiayi Xu
Categories
Abstract
In this paper, we study the analogous Erdős similarity conjecture in higher dimensions and generalize the Eigen-Falconer theorem. We show that if $A=\{\boldsymbol{x}_n\}_{n=1}^\infty \subseteq \mathbb{R}^d$ is a sequence of non-zero vectors satisfying \[ \lim_{n \to \infty} \|\boldsymbol{x}_n\| =0 \quad \text{and} \quad \lim_{n \to \infty} \frac{\|\boldsymbol{x}_{n+1}\|}{\|\boldsymbol{x}_n\|} = 1, \] then there exists a measurable set $E \subseteq \mathbb{R}^d$ with positive Lebesgue measure such that $E$ contains no affine copies of $A$.
On the Eigen-Falconer theorem in $\mathbb{R}^d$
Categories
Abstract
In this paper, we study the analogous Erdős similarity conjecture in higher dimensions and generalize the Eigen-Falconer theorem. We show that if $A=\{\boldsymbol{x}_n\}_{n=1}^\infty \subseteq \mathbb{R}^d$ is a sequence of non-zero vectors satisfying \[ \lim_{n \to \infty} \|\boldsymbol{x}_n\| =0 \quad \text{and} \quad \lim_{n \to \infty} \frac{\|\boldsymbol{x}_{n+1}\|}{\|\boldsymbol{x}_n\|} = 1, \] then there exists a measurable set $E \subseteq \mathbb{R}^d$ with positive Lebesgue measure such that $E$ contains no affine copies of $A$.
Authors
Wenxia Li, Zhiqiang Wang, Jiayi Xu
Click to preview the PDF directly in your browser