PaperSwipe

Fault-tolerant quantum computation with constant overhead for general noise

Published 4 days agoVersion 1arXiv:2512.02760

Authors

Matthias Christandl, Omar Fawzi, Ashutosh Goswami

Categories

quant-ph

Abstract

Fault-tolerant quantum computation traditionally incurs substantial resource overhead, with both qubit and time overheads scaling polylogarithmically with the size of the computation. While prior work by Gottesman showed that constant qubit overhead is achievable under stochastic noise using quantum low-density parity-check (QLDPC) codes, it has remained an open question whether similar guarantees hold under more general, non-stochastic noise models. In this work, we address this question by considering a general circuit-level noise model defined via the diamond norm, which captures both stochastic and non-stochastic noise, including coherent and amplitude damping noise. We prove that constant qubit overhead fault-tolerant quantum computation is achievable in this general setting, using QLDPC codes with constant rate and linear minimum distance. To establish our result, we develop a fault-tolerant error correction scheme and a method for implementing logic gates under general circuit noise. These results extend the theoretical foundations of fault-tolerant quantum computation and offer new directions for fault-tolerant architectures under realistic noise models.

Fault-tolerant quantum computation with constant overhead for general noise

4 days ago
v1
3 authors

Categories

quant-ph

Abstract

Fault-tolerant quantum computation traditionally incurs substantial resource overhead, with both qubit and time overheads scaling polylogarithmically with the size of the computation. While prior work by Gottesman showed that constant qubit overhead is achievable under stochastic noise using quantum low-density parity-check (QLDPC) codes, it has remained an open question whether similar guarantees hold under more general, non-stochastic noise models. In this work, we address this question by considering a general circuit-level noise model defined via the diamond norm, which captures both stochastic and non-stochastic noise, including coherent and amplitude damping noise. We prove that constant qubit overhead fault-tolerant quantum computation is achievable in this general setting, using QLDPC codes with constant rate and linear minimum distance. To establish our result, we develop a fault-tolerant error correction scheme and a method for implementing logic gates under general circuit noise. These results extend the theoretical foundations of fault-tolerant quantum computation and offer new directions for fault-tolerant architectures under realistic noise models.

Authors

Matthias Christandl, Omar Fawzi, Ashutosh Goswami

arXiv ID: 2512.02760
Published Dec 2, 2025

Click to preview the PDF directly in your browser