PaperSwipe

Prior preferences in active inference agents: soft, hard, and goal shaping

Published 3 days agoVersion 1arXiv:2512.03293

Authors

Filippo Torresan, Ryota Kanai, Manuel Baltieri

Categories

cs.AIq-bio.NC

Abstract

Active inference proposes expected free energy as an objective for planning and decision-making to adequately balance exploitative and explorative drives in learning agents. The exploitative drive, or what an agent wants to achieve, is formalised as the Kullback-Leibler divergence between a variational probability distribution, updated at each inference step, and a preference probability distribution that indicates what states or observations are more likely for the agent, hence determining the agent's goal in a certain environment. In the literature, the questions of how the preference distribution should be specified and of how a certain specification impacts inference and learning in an active inference agent have been given hardly any attention. In this work, we consider four possible ways of defining the preference distribution, either providing the agents with hard or soft goals and either involving or not goal shaping (i.e., intermediate goals). We compare the performances of four agents, each given one of the possible preference distributions, in a grid world navigation task. Our results show that goal shaping enables the best performance overall (i.e., it promotes exploitation) while sacrificing learning about the environment's transition dynamics (i.e., it hampers exploration).

Prior preferences in active inference agents: soft, hard, and goal shaping

3 days ago
v1
3 authors

Categories

cs.AIq-bio.NC

Abstract

Active inference proposes expected free energy as an objective for planning and decision-making to adequately balance exploitative and explorative drives in learning agents. The exploitative drive, or what an agent wants to achieve, is formalised as the Kullback-Leibler divergence between a variational probability distribution, updated at each inference step, and a preference probability distribution that indicates what states or observations are more likely for the agent, hence determining the agent's goal in a certain environment. In the literature, the questions of how the preference distribution should be specified and of how a certain specification impacts inference and learning in an active inference agent have been given hardly any attention. In this work, we consider four possible ways of defining the preference distribution, either providing the agents with hard or soft goals and either involving or not goal shaping (i.e., intermediate goals). We compare the performances of four agents, each given one of the possible preference distributions, in a grid world navigation task. Our results show that goal shaping enables the best performance overall (i.e., it promotes exploitation) while sacrificing learning about the environment's transition dynamics (i.e., it hampers exploration).

Authors

Filippo Torresan, Ryota Kanai, Manuel Baltieri

arXiv ID: 2512.03293
Published Dec 2, 2025

Click to preview the PDF directly in your browser