PaperSwipe

Bayesian Event-Based Model for Disease Subtype and Stage Inference

Published 3 days agoVersion 1arXiv:2512.03467

Authors

Hongtao Hao, Joseph L. Austerweil

Categories

cs.LGstat.ME

Abstract

Chronic diseases often progress differently across patients. Rather than randomly varying, there are typically a small number of subtypes for how a disease progresses across patients. To capture this structured heterogeneity, the Subtype and Stage Inference Event-Based Model (SuStaIn) estimates the number of subtypes, the order of disease progression for each subtype, and assigns each patient to a subtype from primarily cross-sectional data. It has been widely applied to uncover the subtypes of many diseases and inform our understanding of them. But how robust is its performance? In this paper, we develop a principled Bayesian subtype variant of the event-based model (BEBMS) and compare its performance to SuStaIn in a variety of synthetic data experiments with varied levels of model misspecification. BEBMS substantially outperforms SuStaIn across ordering, staging, and subtype assignment tasks. Further, we apply BEBMS and SuStaIn to a real-world Alzheimer's data set. We find BEBMS has results that are more consistent with the scientific consensus of Alzheimer's disease progression than SuStaIn.

Bayesian Event-Based Model for Disease Subtype and Stage Inference

3 days ago
v1
2 authors

Categories

cs.LGstat.ME

Abstract

Chronic diseases often progress differently across patients. Rather than randomly varying, there are typically a small number of subtypes for how a disease progresses across patients. To capture this structured heterogeneity, the Subtype and Stage Inference Event-Based Model (SuStaIn) estimates the number of subtypes, the order of disease progression for each subtype, and assigns each patient to a subtype from primarily cross-sectional data. It has been widely applied to uncover the subtypes of many diseases and inform our understanding of them. But how robust is its performance? In this paper, we develop a principled Bayesian subtype variant of the event-based model (BEBMS) and compare its performance to SuStaIn in a variety of synthetic data experiments with varied levels of model misspecification. BEBMS substantially outperforms SuStaIn across ordering, staging, and subtype assignment tasks. Further, we apply BEBMS and SuStaIn to a real-world Alzheimer's data set. We find BEBMS has results that are more consistent with the scientific consensus of Alzheimer's disease progression than SuStaIn.

Authors

Hongtao Hao, Joseph L. Austerweil

arXiv ID: 2512.03467
Published Dec 3, 2025

Click to preview the PDF directly in your browser