PaperSwipe

Difference Decomposition Networks for Infrared Small Target Detection

Published 3 days agoVersion 1arXiv:2512.03470

Authors

Chen Hu, Mingyu Zhou, Shuai Yuan, Hongbo Hu, Xiangyu Qiu, Junhai Luo, Tian Pu, Xiyin Li

Categories

cs.CV

Abstract

Infrared small target detection (ISTD) faces two major challenges: a lack of discernible target texture and severe background clutter, which results in the background obscuring the target. To enhance targets and suppress backgrounds, we propose the Basis Decomposition Module (BDM) as an extensible and lightweight module based on basis decomposition, which decomposes a complex feature into several basis features and enhances certain information while eliminating redundancy. Extending BDM leads to a series of modules, including the Spatial Difference Decomposition Module (SD$^\mathrm{2}$M), Spatial Difference Decomposition Downsampling Module (SD$^\mathrm{3}$M), and Temporal Difference Decomposition Module (TD$^\mathrm{2}$M). Based on these modules, we develop the Spatial Difference Decomposition Network (SD$^\mathrm{2}$Net) for single-frame ISTD (SISTD) and the Spatiotemporal Difference Decomposition Network (STD$^\mathrm{2}$Net) for multi-frame ISTD (MISTD). SD$^\mathrm{2}$Net integrates SD$^\mathrm{2}$M and SD$^\mathrm{3}$M within an adapted U-shaped architecture. We employ TD$^\mathrm{2}$M to introduce motion information, which transforms SD$^\mathrm{2}$Net into STD$^\mathrm{2}$Net. Extensive experiments on SISTD and MISTD datasets demonstrate state-of-the-art (SOTA) performance. On the SISTD task, SD$^\mathrm{2}$Net performs well compared to most established networks. On the MISTD datasets, STD$^\mathrm{2}$Net achieves a mIoU of 87.68\%, outperforming SD$^\mathrm{2}$Net, which achieves a mIoU of 64.97\%. Our codes are available: https://github.com/greekinRoma/IRSTD_HC_Platform.

Difference Decomposition Networks for Infrared Small Target Detection

3 days ago
v1
8 authors

Categories

cs.CV

Abstract

Infrared small target detection (ISTD) faces two major challenges: a lack of discernible target texture and severe background clutter, which results in the background obscuring the target. To enhance targets and suppress backgrounds, we propose the Basis Decomposition Module (BDM) as an extensible and lightweight module based on basis decomposition, which decomposes a complex feature into several basis features and enhances certain information while eliminating redundancy. Extending BDM leads to a series of modules, including the Spatial Difference Decomposition Module (SD$^\mathrm{2}$M), Spatial Difference Decomposition Downsampling Module (SD$^\mathrm{3}$M), and Temporal Difference Decomposition Module (TD$^\mathrm{2}$M). Based on these modules, we develop the Spatial Difference Decomposition Network (SD$^\mathrm{2}$Net) for single-frame ISTD (SISTD) and the Spatiotemporal Difference Decomposition Network (STD$^\mathrm{2}$Net) for multi-frame ISTD (MISTD). SD$^\mathrm{2}$Net integrates SD$^\mathrm{2}$M and SD$^\mathrm{3}$M within an adapted U-shaped architecture. We employ TD$^\mathrm{2}$M to introduce motion information, which transforms SD$^\mathrm{2}$Net into STD$^\mathrm{2}$Net. Extensive experiments on SISTD and MISTD datasets demonstrate state-of-the-art (SOTA) performance. On the SISTD task, SD$^\mathrm{2}$Net performs well compared to most established networks. On the MISTD datasets, STD$^\mathrm{2}$Net achieves a mIoU of 87.68\%, outperforming SD$^\mathrm{2}$Net, which achieves a mIoU of 64.97\%. Our codes are available: https://github.com/greekinRoma/IRSTD_HC_Platform.

Authors

Chen Hu, Mingyu Zhou, Shuai Yuan et al. (+5 more)

arXiv ID: 2512.03470
Published Dec 3, 2025

Click to preview the PDF directly in your browser