State Space Models for Bioacoustics: A comparative Evaluation with Transformers
Authors
Chengyu Tang, Sanjeev Baskiyar
Categories
Abstract
In this study, we evaluate the efficacy of the Mamba model in the field of bioacoustics. We first pretrain a Mamba-based audio large language model (LLM) on a large corpus of audio data using self-supervised learning. We fine-tune and evaluate BioMamba on the BEANS benchmark, a collection of diverse bioacoustic tasks including classification and detection, and compare its performance and efficiency with multiple baseline models, including AVES, a state-of-the-art Transformer-based model. The results show that BioMamba achieves comparable performance with AVES while consumption significantly less VRAM, demonstrating its potential in this domain.
State Space Models for Bioacoustics: A comparative Evaluation with Transformers
Categories
Abstract
In this study, we evaluate the efficacy of the Mamba model in the field of bioacoustics. We first pretrain a Mamba-based audio large language model (LLM) on a large corpus of audio data using self-supervised learning. We fine-tune and evaluate BioMamba on the BEANS benchmark, a collection of diverse bioacoustic tasks including classification and detection, and compare its performance and efficiency with multiple baseline models, including AVES, a state-of-the-art Transformer-based model. The results show that BioMamba achieves comparable performance with AVES while consumption significantly less VRAM, demonstrating its potential in this domain.
Authors
Chengyu Tang, Sanjeev Baskiyar
Click to preview the PDF directly in your browser