PaperSwipe

A Co-evolutionary Approach for Heston Calibration

Published 3 days agoVersion 1arXiv:2512.03922

Authors

Julian Gutierrez

Categories

q-fin.PR

Abstract

We evaluate a co-evolutionary calibration framework for the Heston model in which a genetic algorithm (GA) over parameters is coupled to an evolving neural inverse map from option surfaces to parameters. While GA-history sampling can reduce training loss quickly and yields strong in-sample fits to the target surface, learning-curve diagnostics show a widening train--validation gap across generations, indicating substantial overfitting induced by the concentrated and less diverse dataset. In contrast, a broad, space-filling dataset generated via Latin hypercube sampling (LHS) achieves nearly comparable calibration accuracy while delivering markedly better out-of-sample stability across held-out surfaces. These results suggest that apparent improvements from co-evolutionary data generation largely reflect target-specific specialization rather than a more reliable global inverse mapping, and that maintaining dataset diversity is critical for robust amortized calibration.

A Co-evolutionary Approach for Heston Calibration

3 days ago
v1
1 author

Categories

q-fin.PR

Abstract

We evaluate a co-evolutionary calibration framework for the Heston model in which a genetic algorithm (GA) over parameters is coupled to an evolving neural inverse map from option surfaces to parameters. While GA-history sampling can reduce training loss quickly and yields strong in-sample fits to the target surface, learning-curve diagnostics show a widening train--validation gap across generations, indicating substantial overfitting induced by the concentrated and less diverse dataset. In contrast, a broad, space-filling dataset generated via Latin hypercube sampling (LHS) achieves nearly comparable calibration accuracy while delivering markedly better out-of-sample stability across held-out surfaces. These results suggest that apparent improvements from co-evolutionary data generation largely reflect target-specific specialization rather than a more reliable global inverse mapping, and that maintaining dataset diversity is critical for robust amortized calibration.

Authors

Julian Gutierrez

arXiv ID: 2512.03922
Published Dec 3, 2025

Click to preview the PDF directly in your browser