Convergence for Discrete Parameter Updates
Authors
Paul Wilson, Fabio Zanasi, George Constantinides
Categories
Abstract
Modern deep learning models require immense computational resources, motivating research into low-precision training. Quantised training addresses this by representing training components in low-bit integers, but typically relies on discretising real-valued updates. We introduce an alternative approach where the update rule itself is discrete, avoiding the quantisation of continuous updates by design. We establish convergence guarantees for a general class of such discrete schemes, and present a multinomial update rule as a concrete example, supported by empirical evaluation. This perspective opens new avenues for efficient training, particularly for models with inherently discrete structure.
Convergence for Discrete Parameter Updates
Categories
Abstract
Modern deep learning models require immense computational resources, motivating research into low-precision training. Quantised training addresses this by representing training components in low-bit integers, but typically relies on discretising real-valued updates. We introduce an alternative approach where the update rule itself is discrete, avoiding the quantisation of continuous updates by design. We establish convergence guarantees for a general class of such discrete schemes, and present a multinomial update rule as a concrete example, supported by empirical evaluation. This perspective opens new avenues for efficient training, particularly for models with inherently discrete structure.
Authors
Paul Wilson, Fabio Zanasi, George Constantinides
Click to preview the PDF directly in your browser