Timely Information for Strategic Persuasion
Authors
Ahmet Bugra Gundogan, Melih Bastopcu
Categories
Abstract
This work investigates a dynamic variant of Bayesian persuasion, in which a strategic sender seeks to influence a receiver's belief over time through controlling the timing of the information disclosure, under resource constraints. We consider a binary information source (i.e., taking values 0 or 1), where the source's state evolve according to a continuous-time Markov chain (CTMC). In this setting, the receiver aims to estimate the source's state as accurately as possible. In contrast, the sender seeks to persuade the receiver to estimate the state to be 1, regardless of whether this estimate reflects the true state. This misalignment between their objectives naturally leads to a Stackelberg game formulation where the sender, acting as the leader, chooses an information-revelation policy, and the receiver, as the follower, decides whether to follow the sender's messages. As a result, the sender's objective is to maximize the long-term average time that the receiver's estimate equals 1, subject to a total sampling constraint and a constraint for the receiver to follow the sender's messages called incentive compatibility (IC) constraint. We first consider the single-source problem and show that the sender's optimal policy is to allocate a minimal sampling rate to the undesired state 0 (just enough to satisfy the IC constraint) and assign the remaining sampling rate to the desired state 1. Next, we extend the analysis to the multi-source case, where each source has a different minimal sampling rate. Our results show that the sender can leverage the timeliness of the revealed information to influence the receiver, thereby achieving a higher utility.
Timely Information for Strategic Persuasion
Categories
Abstract
This work investigates a dynamic variant of Bayesian persuasion, in which a strategic sender seeks to influence a receiver's belief over time through controlling the timing of the information disclosure, under resource constraints. We consider a binary information source (i.e., taking values 0 or 1), where the source's state evolve according to a continuous-time Markov chain (CTMC). In this setting, the receiver aims to estimate the source's state as accurately as possible. In contrast, the sender seeks to persuade the receiver to estimate the state to be 1, regardless of whether this estimate reflects the true state. This misalignment between their objectives naturally leads to a Stackelberg game formulation where the sender, acting as the leader, chooses an information-revelation policy, and the receiver, as the follower, decides whether to follow the sender's messages. As a result, the sender's objective is to maximize the long-term average time that the receiver's estimate equals 1, subject to a total sampling constraint and a constraint for the receiver to follow the sender's messages called incentive compatibility (IC) constraint. We first consider the single-source problem and show that the sender's optimal policy is to allocate a minimal sampling rate to the undesired state 0 (just enough to satisfy the IC constraint) and assign the remaining sampling rate to the desired state 1. Next, we extend the analysis to the multi-source case, where each source has a different minimal sampling rate. Our results show that the sender can leverage the timeliness of the revealed information to influence the receiver, thereby achieving a higher utility.
Authors
Ahmet Bugra Gundogan, Melih Bastopcu
Click to preview the PDF directly in your browser