Ask Safely: Privacy-Aware LLM Query Generation for Knowledge Graphs
Authors
Mauro Dalle Lucca Tosi, Jordi Cabot
Categories
Abstract
Large Language Models (LLMs) are increasingly used to query knowledge graphs (KGs) due to their strong semantic understanding and extrapolation capabilities compared to traditional approaches. However, these methods cannot be applied when the KG contains sensitive data and the user lacks the resources to deploy a local generative LLM. To address this issue, we propose a privacy-aware query generation approach for KGs. Our method identifies sensitive information in the graph based on its structure and omits such values before requesting the LLM to translate natural language questions into Cypher queries. Experimental results show that our approach preserves the quality of the generated queries while preventing sensitive data from being transmitted to third-party services.
Ask Safely: Privacy-Aware LLM Query Generation for Knowledge Graphs
Categories
Abstract
Large Language Models (LLMs) are increasingly used to query knowledge graphs (KGs) due to their strong semantic understanding and extrapolation capabilities compared to traditional approaches. However, these methods cannot be applied when the KG contains sensitive data and the user lacks the resources to deploy a local generative LLM. To address this issue, we propose a privacy-aware query generation approach for KGs. Our method identifies sensitive information in the graph based on its structure and omits such values before requesting the LLM to translate natural language questions into Cypher queries. Experimental results show that our approach preserves the quality of the generated queries while preventing sensitive data from being transmitted to third-party services.
Authors
Mauro Dalle Lucca Tosi, Jordi Cabot
Click to preview the PDF directly in your browser