PaperSwipe

Realizable Abstractions: Near-Optimal Hierarchical Reinforcement Learning

Published 2 days agoVersion 1arXiv:2512.04958

Authors

Roberto Cipollone, Luca Iocchi, Matteo Leonetti

Categories

cs.LGcs.AI

Abstract

The main focus of Hierarchical Reinforcement Learning (HRL) is studying how large Markov Decision Processes (MDPs) can be more efficiently solved when addressed in a modular way, by combining partial solutions computed for smaller subtasks. Despite their very intuitive role for learning, most notions of MDP abstractions proposed in the HRL literature have limited expressive power or do not possess formal efficiency guarantees. This work addresses these fundamental issues by defining Realizable Abstractions, a new relation between generic low-level MDPs and their associated high-level decision processes. The notion we propose avoids non-Markovianity issues and has desirable near-optimality guarantees. Indeed, we show that any abstract policy for Realizable Abstractions can be translated into near-optimal policies for the low-level MDP, through a suitable composition of options. As demonstrated in the paper, these options can be expressed as solutions of specific constrained MDPs. Based on these findings, we propose RARL, a new HRL algorithm that returns compositional and near-optimal low-level policies, taking advantage of the Realizable Abstraction given in the input. We show that RARL is Probably Approximately Correct, it converges in a polynomial number of samples, and it is robust to inaccuracies in the abstraction.

Realizable Abstractions: Near-Optimal Hierarchical Reinforcement Learning

2 days ago
v1
3 authors

Categories

cs.LGcs.AI

Abstract

The main focus of Hierarchical Reinforcement Learning (HRL) is studying how large Markov Decision Processes (MDPs) can be more efficiently solved when addressed in a modular way, by combining partial solutions computed for smaller subtasks. Despite their very intuitive role for learning, most notions of MDP abstractions proposed in the HRL literature have limited expressive power or do not possess formal efficiency guarantees. This work addresses these fundamental issues by defining Realizable Abstractions, a new relation between generic low-level MDPs and their associated high-level decision processes. The notion we propose avoids non-Markovianity issues and has desirable near-optimality guarantees. Indeed, we show that any abstract policy for Realizable Abstractions can be translated into near-optimal policies for the low-level MDP, through a suitable composition of options. As demonstrated in the paper, these options can be expressed as solutions of specific constrained MDPs. Based on these findings, we propose RARL, a new HRL algorithm that returns compositional and near-optimal low-level policies, taking advantage of the Realizable Abstraction given in the input. We show that RARL is Probably Approximately Correct, it converges in a polynomial number of samples, and it is robust to inaccuracies in the abstraction.

Authors

Roberto Cipollone, Luca Iocchi, Matteo Leonetti

arXiv ID: 2512.04958
Published Dec 4, 2025

Click to preview the PDF directly in your browser