HiPPO: Exploring A Novel Hierarchical Pronunciation Assessment Approach for Spoken Languages
Authors
Bi-Cheng Yan, Hsin-Wei Wang, Fu-An Chao, Tien-Hong Lo, Yung-Chang Hsu, Berlin Chen
Categories
Abstract
Automatic pronunciation assessment (APA) seeks to quantify a second language (L2) learner's pronunciation proficiency in a target language by offering timely and fine-grained diagnostic feedback. Most existing efforts on APA have predominantly concentrated on highly constrained reading-aloud tasks (where learners are prompted to read a reference text aloud); however, assessing pronunciation quality in unscripted speech (or free-speaking scenarios) remains relatively underexplored. In light of this, we first propose HiPPO, a hierarchical pronunciation assessment model tailored for spoken languages, which evaluates an L2 learner's oral proficiency at multiple linguistic levels based solely on the speech uttered by the learner. To improve the overall accuracy of assessment, a contrastive ordinal regularizer and a curriculum learning strategy are introduced for model training. The former aims to generate score-discriminative features by exploiting the ordinal nature of regression targets, while the latter gradually ramps up the training complexity to facilitate the assessment task that takes unscripted speech as input. Experiments conducted on the Speechocean762 benchmark dataset validates the feasibility and superiority of our method in relation to several cutting-edge baselines.
HiPPO: Exploring A Novel Hierarchical Pronunciation Assessment Approach for Spoken Languages
Categories
Abstract
Automatic pronunciation assessment (APA) seeks to quantify a second language (L2) learner's pronunciation proficiency in a target language by offering timely and fine-grained diagnostic feedback. Most existing efforts on APA have predominantly concentrated on highly constrained reading-aloud tasks (where learners are prompted to read a reference text aloud); however, assessing pronunciation quality in unscripted speech (or free-speaking scenarios) remains relatively underexplored. In light of this, we first propose HiPPO, a hierarchical pronunciation assessment model tailored for spoken languages, which evaluates an L2 learner's oral proficiency at multiple linguistic levels based solely on the speech uttered by the learner. To improve the overall accuracy of assessment, a contrastive ordinal regularizer and a curriculum learning strategy are introduced for model training. The former aims to generate score-discriminative features by exploiting the ordinal nature of regression targets, while the latter gradually ramps up the training complexity to facilitate the assessment task that takes unscripted speech as input. Experiments conducted on the Speechocean762 benchmark dataset validates the feasibility and superiority of our method in relation to several cutting-edge baselines.
Authors
Bi-Cheng Yan, Hsin-Wei Wang, Fu-An Chao et al. (+3 more)
Click to preview the PDF directly in your browser