Pump Free Microwave-Optical Quantum Transduction
Authors
Fangxin Li, Jaesung Heo, Zhaoyou Wang, Andrew P. Higginbotham, Alexander A. High, Liang Jiang
Categories
Abstract
Distributed quantum computing involves superconducting computation nodes operating at microwave frequencies, which are connected by long-distance transmission lines that transmit photons at optical frequencies. Quantum transduction, which coherently converts between microwave and optical (M-O) photons, is a critical component of such an architecture. Current approaches are hindered by the unavoidable problem of device heating due to the optical pump. In this work, we propose a pump-free scheme based on color centers that generates time-bin encoded M-O Bell pairs. Our scheme first creates spin-photon entanglement and then converts the spin state into a time-bin-encoded microwave photon using a strongly coupled Purcell-enhanced resonator. In our protocol, the microwave retrieval is heralded by detecting the microwave signal with a three-level transmon. We have analyzed the resulting Bell state fidelity and generation probability of this protocol. Our simulation shows that by combining a state-of-the-art spin-optical interface with our proposed strongly-coupled spin-microwave design, the pump-free scheme can generate M-O Bell pairs at a heralding rate exceeding one kilohertz with near-unity fidelity, which establishes the scheme as a promising source for M-O Bell pairs.
Pump Free Microwave-Optical Quantum Transduction
Categories
Abstract
Distributed quantum computing involves superconducting computation nodes operating at microwave frequencies, which are connected by long-distance transmission lines that transmit photons at optical frequencies. Quantum transduction, which coherently converts between microwave and optical (M-O) photons, is a critical component of such an architecture. Current approaches are hindered by the unavoidable problem of device heating due to the optical pump. In this work, we propose a pump-free scheme based on color centers that generates time-bin encoded M-O Bell pairs. Our scheme first creates spin-photon entanglement and then converts the spin state into a time-bin-encoded microwave photon using a strongly coupled Purcell-enhanced resonator. In our protocol, the microwave retrieval is heralded by detecting the microwave signal with a three-level transmon. We have analyzed the resulting Bell state fidelity and generation probability of this protocol. Our simulation shows that by combining a state-of-the-art spin-optical interface with our proposed strongly-coupled spin-microwave design, the pump-free scheme can generate M-O Bell pairs at a heralding rate exceeding one kilohertz with near-unity fidelity, which establishes the scheme as a promising source for M-O Bell pairs.
Authors
Fangxin Li, Jaesung Heo, Zhaoyou Wang et al. (+3 more)
Click to preview the PDF directly in your browser