PaperSwipe

Transformers for Tabular Data: A Training Perspective of Self-Attention via Optimal Transport

Published 4 days agoVersion 1arXiv:2512.09530

Authors

Antonio Candelieri, Alessandro Quadrio

Categories

stat.MLcs.LG

Abstract

This thesis examines self-attention training through the lens of Optimal Transport (OT) and develops an OT-based alternative for tabular classification. The study tracks intermediate projections of the self-attention layer during training and evaluates their evolution using discrete OT metrics, including Wasserstein distance, Monge gap, optimality, and efficiency. Experiments are conducted on classification tasks with two and three classes, as well as on a biomedical dataset. Results indicate that the final self-attention mapping often approximates the OT optimal coupling, yet the training trajectory remains inefficient. Pretraining the MLP section on synthetic data partially improves convergence but is sensitive to their initialization. To address these limitations, an OT-based algorithm is introduced: it generates class-specific dummy Gaussian distributions, computes an OT alignment with the data, and trains an MLP to generalize this mapping. The method achieves accuracy comparable to Transformers while reducing computational cost and scaling more efficiently under standardized inputs, though its performance depends on careful dummy-geometry design. All experiments and implementations are conducted in R.

Transformers for Tabular Data: A Training Perspective of Self-Attention via Optimal Transport

4 days ago
v1
2 authors

Categories

stat.MLcs.LG

Abstract

This thesis examines self-attention training through the lens of Optimal Transport (OT) and develops an OT-based alternative for tabular classification. The study tracks intermediate projections of the self-attention layer during training and evaluates their evolution using discrete OT metrics, including Wasserstein distance, Monge gap, optimality, and efficiency. Experiments are conducted on classification tasks with two and three classes, as well as on a biomedical dataset. Results indicate that the final self-attention mapping often approximates the OT optimal coupling, yet the training trajectory remains inefficient. Pretraining the MLP section on synthetic data partially improves convergence but is sensitive to their initialization. To address these limitations, an OT-based algorithm is introduced: it generates class-specific dummy Gaussian distributions, computes an OT alignment with the data, and trains an MLP to generalize this mapping. The method achieves accuracy comparable to Transformers while reducing computational cost and scaling more efficiently under standardized inputs, though its performance depends on careful dummy-geometry design. All experiments and implementations are conducted in R.

Authors

Antonio Candelieri, Alessandro Quadrio

arXiv ID: 2512.09530
Published Dec 10, 2025

Click to preview the PDF directly in your browser