PaperSwipe

Deep Thermalization and Measurements of Quantum Resources

Published 4 days agoVersion 1arXiv:2512.09999

Authors

Naga Dileep Varikuti, Soumik Bandyopadhyay, Philipp Hauke

Categories

quant-phcond-mat.dis-nncond-mat.stat-mechhep-thnlin.CD

Abstract

Quantum resource theories (QRTs) provide a unified framework for characterizing useful quantum phenomena subject to physical constraints, but are notoriously hard to assess in experimental systems. In this letter, we introduce a unified protocol for quantifying the resource-generating power (RGP) of arbitrary quantum evolutions applicable to multiple QRTs. It is based on deep thermalization (DT), which has recently gained attention for its role in the emergence of quantum state designs from partial projective measurements. Central to our approach is the use of projected ensembles, recently employed to probe DT, together with new twirling identities that allow us to directly infer the RGP of the underlying dynamics. These identities further reveal how resources build up and thermalize in generic quantum circuits. Finally, we show that quantum resources themselves undergo deep thermalization at the subsystem level, offering a complementary and another experimentally accessible route to infer the RGP. Our work connects deep thermalization to resource quantification, offering a new perspective on the essential role of various resources in generating state designs.

Deep Thermalization and Measurements of Quantum Resources

4 days ago
v1
3 authors

Categories

quant-phcond-mat.dis-nncond-mat.stat-mechhep-thnlin.CD

Abstract

Quantum resource theories (QRTs) provide a unified framework for characterizing useful quantum phenomena subject to physical constraints, but are notoriously hard to assess in experimental systems. In this letter, we introduce a unified protocol for quantifying the resource-generating power (RGP) of arbitrary quantum evolutions applicable to multiple QRTs. It is based on deep thermalization (DT), which has recently gained attention for its role in the emergence of quantum state designs from partial projective measurements. Central to our approach is the use of projected ensembles, recently employed to probe DT, together with new twirling identities that allow us to directly infer the RGP of the underlying dynamics. These identities further reveal how resources build up and thermalize in generic quantum circuits. Finally, we show that quantum resources themselves undergo deep thermalization at the subsystem level, offering a complementary and another experimentally accessible route to infer the RGP. Our work connects deep thermalization to resource quantification, offering a new perspective on the essential role of various resources in generating state designs.

Authors

Naga Dileep Varikuti, Soumik Bandyopadhyay, Philipp Hauke

arXiv ID: 2512.09999
Published Dec 10, 2025

Click to preview the PDF directly in your browser